Coconstant sheaves #
In this file we define a coconstant sheaf functor A ⥤ Sheaf J A as a right adjoint to the
global sections functor Γ : Sheaf J A ⥤ A when one exists.
@[reducible, inline]
abbrev
CategoryTheory.HasCoconstantSheaf
{C : Type u}
[Category.{v, u} C]
(J : GrothendieckTopology C)
(A : Type u₂)
[Category.{v₂, u₂} A]
[HasWeakSheafify J A]
[HasGlobalSectionsFunctor J A]
:
Typeclass stating that the global sections functor has a right adjoint. This right adjoint will
then be called the coconstant sheaf functor and written coconstantSheaf J A.
Equations
Instances For
noncomputable def
CategoryTheory.coconstantSheaf
{C : Type u}
[Category.{v, u} C]
(J : GrothendieckTopology C)
(A : Type u₂)
[Category.{v₂, u₂} A]
[HasWeakSheafify J A]
[HasGlobalSectionsFunctor J A]
[HasCoconstantSheaf J A]
:
We define the coconstant sheaf functor as the right-adjoint of the global sections functor whenever it exists.
Equations
Instances For
noncomputable def
CategoryTheory.ΓCoconstantSheafAdj
{C : Type u}
[Category.{v, u} C]
(J : GrothendieckTopology C)
(A : Type u₂)
[Category.{v₂, u₂} A]
[HasWeakSheafify J A]
[HasGlobalSectionsFunctor J A]
[HasCoconstantSheaf J A]
:
The global sections functor is by definition left-adjoint to the coconstant sheaf functor whenever both exist.
Equations
Instances For
instance
CategoryTheory.instIsRightAdjointSheafCoconstantSheaf
{C : Type u}
[Category.{v, u} C]
(J : GrothendieckTopology C)
(A : Type u₂)
[Category.{v₂, u₂} A]
[HasWeakSheafify J A]
[HasGlobalSectionsFunctor J A]
[HasCoconstantSheaf J A]
:
noncomputable def
CategoryTheory.Sheaf.constΓCoconstTriple
{C : Type u}
[Category.{v, u} C]
(J : GrothendieckTopology C)
(A : Type u₂)
[Category.{v₂, u₂} A]
[HasWeakSheafify J A]
[HasGlobalSectionsFunctor J A]
[HasCoconstantSheaf J A]
:
Adjunction.Triple (constantSheaf J A) (Γ J A) (coconstantSheaf J A)
Equations
- CategoryTheory.Sheaf.constΓCoconstTriple J A = { adj₁ := CategoryTheory.constantSheafΓAdj J A, adj₂ := CategoryTheory.ΓCoconstantSheafAdj J A }
Instances For
instance
CategoryTheory.instFullSheafCoconstantSheafOfFaithfulConstantSheaf
{C : Type u}
[Category.{v, u} C]
(J : GrothendieckTopology C)
(A : Type u₂)
[Category.{v₂, u₂} A]
[HasWeakSheafify J A]
[HasGlobalSectionsFunctor J A]
[HasCoconstantSheaf J A]
[(constantSheaf J A).Full]
[(constantSheaf J A).Faithful]
:
(coconstantSheaf J A).Full
instance
CategoryTheory.instFaithfulSheafCoconstantSheafOfFullOfConstantSheaf
{C : Type u}
[Category.{v, u} C]
(J : GrothendieckTopology C)
(A : Type u₂)
[Category.{v₂, u₂} A]
[HasWeakSheafify J A]
[HasGlobalSectionsFunctor J A]
[HasCoconstantSheaf J A]
[(constantSheaf J A).Full]
[(constantSheaf J A).Faithful]
:
(coconstantSheaf J A).Faithful